The 14th RPI for November-December 2017

Ran Bachrach - Geophysics Advisor at Schlumberger, Houston, Texas, USA

About Ran Bachrach

Ran received his B.Sc. in geophysics and planetary science in 1993 at Tel Aviv University, and a

Ph.D. in Geophysics, with a Ph.D. Minor, in Civil Engineering, in 1998, from Stanford University. His doctoral dissertation was titled “High Resolution Shallow Seismic Subsurface Characterization”, and his Ph.D. advisor was Prof. Amos Nur. During his Ph.D. thesis he performed seismic imaging of tidal driven fluid flow and worked on velocities in unconsolidated sands, liquefaction and dynamic poroelasticity, as well as on near surface seismic acquisition.

From 1999-2003 Ran was an assistant professor of applied geophysics at the Dept. of Geological Sciences, Michigan State University where he worked on near surface geophysics. In 2002 he started consulting for Schlumberger-WesternGeco’s Reservoir Services. After joining Schlumberger (SLB) he managed new technology group for Schlumberger Reservoir Seismic Services, (2003-2006) developing reservoir characterization techniques. In 2006 Ran managed technologies for integrated technologies group, a group responsible for integrated seismic-geomechanics solutions as well as new technologies for joint analysis of new borehole techniques with seismic data. Ran also taught and advised MSc and Ph.D. students in Tel Aviv University and in various internal and external professional courses.

Ran is currently a scientific advisor in rock physics and geophysics in Schlumberger. His research interests include anisotropic reservoir characterization, high-resolution geophysics, rock physics and physics of porous media, geomechanics, fluid flow, and poroelasticity. In SLB, much of Ran’s works is on the integration of seismic data with different discipline for 3D/4D imaging of subsurface processes, Earth model building (EMB) and Seismic reservoir analysis.

Some of the recent advancements Ran is involved in are:

Pathways or recipes for your success in becoming a well-known name in the rock physics community

I was fortunate to be part of the Stanford Rock physics consortium (SRB) where I spent time both in the rock physics lab and in the field. I find the physics of porous media to be a challenging and rewarding field of study. However, during my Ph.D. I also learned that the rock, the physical experiment and the ability to use the experiment to learn about the material properties of interest, are all interleaved subjects. I then decided to broaden my horizons and study many aspects of the experiment (acquisition, sources, processing etc.), modelling and parameter estimation. I therefore tried to learn as much as I could on topics that may not have been traditionally within the traditional rock physics discipline, including numerical modelling, statistical inference theory as well as seismic wave and source theory. I was also fortunate to interact and learn from many of my peers and colleagues. 

In general, I believe that scientific curiosity and hands on approach have contributed to my carrier. I often think of myself as a professional problem solver as I enjoy solving problems which arise in the field and have some impact.

Challenges you see in taking rock physics to the next level 

There are many challenges in understanding the theory and practice of rock physics. From my perspective the top are:

1. Scales and scaling:

2. Small to large strain theories and having failure as an explicit part of rock models:

3. The regression risk:During the last few decades I have observed that the field of rock physics is in risk of becoming a set of regression techniques for data fitting where well logs and seismic are brought together. While statistical inference is important, rock physics is not only a way to generate functional forms for data fitting. It is our responsibility to demonstrate the value we get by understanding rocks and rock models in comparison to performing regression.

Advice for early career scientists (rock physicists, geophysicists, etc.)

I would recommend the following:

My last comment is that the thin crust we all live on is a resource that needs to be explored and maintained in a sustainable manner. As population grows we need to better manage this shared resource. Geoscience and geo-engineering are here to stay even when society will slowly shift away from hydrocarbons. Rock physics will always be here to support the analysis of geophysical and geomechanical information as long as we provide society with tools for decision making based on technical understanding.

We thank Ran for his continuous contributions to the rock physics community